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3MEthTaskforce: Multi-source Multi-level Multi-token Ethereum
Data Platform
Anonymous Author(s)

Abstract
This paper introduces 3MEthTaskforce (3meth.github.io), a com-
prehensivemulti-source platform that integrates token transactions,
token-specific information, global market indices, and sentiment
data from the Ethereum network. It addresses key challenges in
cryptocurrency research, particularly the need for a more holistic
approach to understanding market risks and user behavior. 3MEth-
Taskforce highlights three critical tasks: User Behavior Prediction,
Token Price Prediction, and User Behavior Marking, utilizing ma-
chine learning models such as dynamic GNNs to tackle these tasks.
By offering benchmarks for these tasks, the platform facilitates
deeper insights into the behavioral risks associated with cryptocur-
rency investments, enabling stakeholders to anticipate sharpmarket
movements and mitigate risks.

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies→ Neural networks; Multi-agent systems; • Applied com-
puting→ Electronic data interchange.
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1 Introduction
The cryptocurrency market has experienced remarkable growth
over the past decade, driven by the rapid development of Ethereum
and the widespread adoption of the ERC20 token standard. As of
2024, the total market capitalization of cryptocurrencies stands at
approximately 1.5 trillion USD, with over 300million people holding
cryptocurrencies and around 10,025 active tokens in circulation12.
Ethereum alone handles an average of 1.2 million transactions per
day3, underscoring the vast scale and complexity of the cryptocur-
rency ecosystem.
1https://etherscan.io/chart/marketcap
2https://www.demandsage.com/blockchain-statistics/
3https://ycharts.com/indicators/ethereum_transactions_per_day
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However, this market is notoriously volatile, influenced by a
range of factors including token prices, global market indicators,
user behavior, and sentiment. The UST de-pegging event in May
2022 [9, 47], which triggered widespread panic and the collapse of
LUNA (now LUNC), highlighted how rapidly sentiment can shift
and impact related assets. As a result, researchers are increasingly
focused on using machine learning to predict trends, detect anom-
alies, and assess risks in cryptocurrency markets [2, 10, 11, 25].

Despite the growing interest in machine learning for cryptocur-
rency analysis, current datasets are often fragmented, focusing on
narrow aspects of the market. For instance, repositories like Zen-
odo [36] and Chartalist [42] provide transaction-level data, while
others, like Kaggle and Huggingface4, offer textual data from news
and social media. These datasets typically isolate specific compo-
nents, missing the broader picture of how factors like transaction
activity, sentiment, and global market trends interact. A compre-
hensive dataset that integrates multiple sources of data to model
these complex interactions is currently lacking.

To address this gap, this paper introduces theMulti-sourceMulti-
levelMulti-token Ethereum Taskforce (3MEthTaskforce), a plat-
form designed to support machine learning research on cryptocur-
rency risk analysis. The platform provides a rich dataset consisting
of 303 million transaction records from 35 million users across
3,880 tokens, as well as text-based sentiment data from Reddit
(2014–2024) and key market indicators such as 24-hour trading vol-
umes. By integrating these diverse data sources, 3MEthTaskforce
enables comprehensive modeling of the relationships between user
behavior, market sentiment, and token performance.

In addition to offering this dataset, 3MEthTaskforce defines three
core tasks – User Behavior Prediction, Token Price Prediction, and
User Behavior Marking – to advance research in cryptocurrency risk
analysis. The platform includes benchmarks for each task, featuring
6 dynamic GNN-based models for user behavior prediction and 2
RNN-based models for token price forecasting, with systematic
experimental results validating the performance of these models.

Furthermore, the platform introduces a novel method for assess-
ing the behavioral risk of cryptocurrency investments, validated
through real-world events such as the LUNA incident. This method
offers a new framework for evaluating user behavior and improving
risk management strategies in decentralized finance (DeFi). The
key contributions of this paper are summarized as follows:
• Introducing 3MEthTaskforce, the first multi-source, multi-token

platform that integrates transaction data, token information,
textual sentiment data, and market indicators, to address gaps in
existing single-source datasets.

• Defining three key tasks: User Behavior Prediction, Token Price
Prediction, and User Behavior Marking, and supporting research
into these tasks by providing comprehensive data and evaluation
frameworks.

4https://huggingface.co/datasets?sort=trending&search=blockchain
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Figure 1: 3MEthTaskforce Data Pipeline. The third column shows datasets from Transaction Record (blue), Token Information
(green), Global Market Indices (red), Textual Indices (yellow)

• Offering a comprehensive set of benchmarks for the proposed
tasks, with systematic experimental results validating the per-
formance of these models.

• Introducing a novel method for assessing behavioral risk in cryp-
tocurrency investments, validated using real-world events such
as the LUNA incident.

2 Related Work
Cryptocurrency-related data repositories. Most existing block-
chain data repositories focus on transaction networks. For example,
the Ethereum dataset on Zenodo (2021) covers 40 ERC20 tokens
but lacks market indices or user sentiment data [36]. Similarly,
Chartalist (2022) offers graph learning benchmarks but is limited
to a few cryptocurrencies and omits sentiment analysis, global
market indices, and user behavior [42]. Public Ethereum datasets on
BigQuery, Kaggle, and Athena provide comprehensive transaction
data, including complete blockchain records, but lack token prices,
global market indices, and social media posts, restricting their use in
tasks requiring multi-source data integration. More recent datasets,
such as EX-GRAPH (2024), link Ethereum transactions with user
social media profiles, enhancing tasks like link prediction and fraud
detection, though the text data in this set cannot be used as a market
sentiment indicator [49].

Some datasets focus on sentiment in cryptocurrency-related
textual data. For example, the dataset by Mohamad et al. (2024)
analyzes sentiment in cryptocurrency news and tweets [34], while
other similar datasets on Huggingface and Kaggle focus on natural
language processing tasks. However, none integrate textual data
with price trends, market indices, or user behavior.

In contrast, the 3MEth dataset integrates multi-token transaction
data, long-term community sentiment, and global market indices, of-
fering a comprehensive multimodal dataset for node- and edge-level
tasks in blockchain graphs. Its inclusion of community sentiment

as a global signal enhances tasks like user behavior analysis and
market prediction.

Application of ML in link prediction and price prediction.
GraphNeural Networks (GNNs) have proven effective for blockchain-
related link-based tasks [39], including anomaly detection [18, 23,
37], user identity inference, and transaction prediction [24, 27, 31].
However, these studies often overlook key features like token price
fluctuations, community sentiment, and market indices. Recent
benchmarks such as the Temporal Graph Benchmark and Live
Graph Lab [22, 55] further showcase GNNs’ capabilities but high-
light the lack of multi-modal data integration in tasks like user
classification and link prediction for NFT networks.

Price prediction is typically framed as a time series problem,
with models like LSTM, GRU, and random forests commonly used
[10, 17, 26, 56, 57]. While some studies incorporate social media
sentiment [19], they often focus on a limited set of tokens. In con-
trast, our dataset enables time series predictions across thousands
of cryptocurrencies, offering broader opportunities for analysis.

Risk assessment in cryptocurrency markets.Most studies on
cryptocurrency user behavior adopt a financial perspective, of-
ten focusing on market-level price fluctuations to analyze risk
[6, 12, 33, 52]. For instance, under conditions of extreme volatility,
Bitcoin has been found to be more stable than Ethereum, aligning
with predictions from extreme value theory [4]. Some research
categorizes market participants into types, such as optimists, pes-
simists, active, and passive investors [5], while other studies employ
machine learning techniques like SVM and k-means clustering to
classify investor types and identify behavioral patterns [30]. While
progress has been made in understanding broader cryptocurrency
investment scenarios, these studies generally offer macro-level as-
sessments and fall short of quantifying specific user behaviors.
Although some research labels investment behaviors as “high risk”

2
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or “low risk” [29], they lack a detailed, data-driven method for
scoring individual investment behaviors.

3 The 3MEthTaskforce Dataset
The 3MEthTaskforce dataset is designed to integrate multi-source,
multi-level, and multi-token data. Appendix A provides some exam-
ples of raw data. The dataset offers a rich and diverse collection
of data spanning transactions, token information, global market
indicators, and social media texts. Below is a detailed description
of each section of the datasets. Figure 1 is a flow chart showing the
3MEthTaskforce pipeline from raw data, to datasets, to tasks.

Section 1: Token Transactions. This section provides 303
million transaction records from 3,880 tokens and 35 million
users on the Ethereum blockchain, stored in 3,880 CSV files, each
representing a specific token. Each transaction includes:
• Sender and receiver wallet addresses: Enables network analysis

and user behavior studies.
• Token address: Links transactions to tokens for token-specific

analysis.
• Transaction value: Reflects the number of tokens transferred,

essential for liquidity studies.
• Blockchain timestamp: Captures transaction timing for temporal

analysis.
See Table 8 for examples. Apart from the large csv file, we also
provide a smaller csv file containing 267, 242 transaction records
of 29, 164wallet addresses. This smaller dataset involves a total of
1, 194 tokens, covering the time period 𝑇𝑠 = [Sep 2016,Nov 2023].
This detailed transaction data is critical for studying user behavior,
liquidity patterns, and tasks like link prediction and fraud detection.

Section 2: Token Information. This section offers metadata
for 3,880 tokens, stored in corresponding CSV files, each with:
• Timestamp: Marks the time of data update.
• Token price: Useful for price prediction and volatility studies.
• Market capitalization: Reflects the token’s market size and domi-

nance.
• 24-hour trading volume: Indicates liquidity and trading activity.
Additionally, two CSV files provide rating data for 269 tokens from
TokenInsight.com, with metrics such as performance and team
strength. This data supports token price prediction, risk analysis,
and token ranking.

Section 3: GlobalMarket Indices. This section providesmacro-
level data to contextualize token transactions, stored in separate
CSV files. Key indicators include:
• Bitcoin dominance: Tracks Bitcoin’s share of the cryptocurrency

market.
• Total market capitalization: Measures the overall market’s value,

with breakdowns by token type.
• Stablecoin market capitalization: Highlights stablecoin liquidity

and stability.
• 24-hour trading volume: A key measure of market activity.
• Treasury Yield for 60-month Certificates of Deposit (TY60MCD):

A macroeconomic benchmark for risk-free returns.
These indices are essential for integrating global market trends into
predictive models for volatility and risk-adjusted returns.

Section 4: Textual Indices. This section contains sentiment
data from Reddit’s Ethereum community, covering 7,800 top posts
from 2014 to 2024. Each post includes:

• Comment text: For sentiment analysis and NLP tasks.
• Post score (net upvotes): Reflects engagement and sentiment

strength.
• Timestamp: Aligns sentiment with price movements.
• Number of comments: Gauges sentiment intensity.
• Sentiment indices: Sentiment scores computed using methods

presented in Section 5.1.

This data is valuable for understanding social dynamics in the
market and enhancing sentiment analysis models that can explain
market movements and improve behavioral predictions.

3.1 Data Collection
We employed a multi-source strategy, integrating data from five
providers to ensure diversity and representativeness.
Ethereum Public ETL Tool for Token Transactions: We used
the Ethereum Public ETL tool [33] to collect token transaction data
for the 3MEth dataset. This tool efficiently extracts, transforms,
and loads transaction data from the Ethereum blockchain, provid-
ing 3, 880 token transaction records. Additionally, we used a free
EthereumAPI (etherscan.io/) to gather 5, 855 active wallet addresses
and their transactions. This results in 267, 242 transaction records
among 29, 164 wallet addresses and 1, 194 tokens which form our
smaller dataset.
DefiLlama for General Token Information: DefiLlama5 was
used to gather historical prices for 3, 880 tokens and global mar-
ket indices (excluding TY60MCD), accessing data from multiple
exchanges.
TokenInsight API for Token Ratings:We obtained token ratings
for 269 Ethereum tokens using the TokenInsight API6, which pro-
vides evaluations based on market performance, technical strength,
and other key factors.
Reddit API (PRAW) for Textual Data: The Python Reddit API
Wrapper (PRAW)7 was used to extract approximately 7, 800 times-
tamped posts from eight popular cryptocurrency subreddits (e.g.,
r/Ethereum, r/CryptoCurrency).
TY60MCD from Federal Reserve Economic Data: Treasury
Yield for 60-month Certificates of Deposit (TY60MCD) data was col-
lected from the Federal Reserve Economic Data (FRED)8, providing
essential macroeconomic indicators.

3.2 Ethics and Privacy
This research adheres to ethical guidelines to minimize privacy
risks. Ethereum’s public blockchain and publicly sourced Reddit
data ensure transparency, with no private content accessed. The
dataset maintains pseudonymity, anonymizing transactions and
Reddit posts by masking identifiers and personal information. Strict
protocols prevent re-identification or unauthorized data use. The

5https://defillama.com/
6https://tokeninsight-api.readme.io/reference/get_rating-coins
7https://defillama.com/
8https://fred.stlouisfed.org/series/TY60MCD
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study aims to provide valuable insights into cryptocurrency trad-
ing and decentralized finance, with potential benefits outweighing
minimal risks. See more details in Appendix B.

4 Tasks
The 3MEthTaskforce platform introduces three key tasks: User Be-
havior Prediction, Token Price Prediction, and User Behavior Marking.
These tasks utilize the platform’s diverse dataset to model and pre-
dict interactions between users and tokens, providing a framework
to systematically study and mitigate behavioral risks driven by both
individual decisions and broader market factors. To formally define
these tasks, we introduce the following key terminologies:
• Transaction History: Captures all user buy and sell activities

across various tokens over a time period (1, 2, . . . , 𝜏), provided
by the Token Transactions section (Section 1). For a user 𝑖 ∈ 𝑈 ,
token 𝑗 ∈ 𝐶 , and time step 𝑡 ≤ 𝜏 , let 𝑎𝑖, 𝑗,𝑡 ∈ {0, 1} denote a
transaction, where 𝑎𝑖, 𝑗,𝑡 = 1 indicates a buy/sell transaction. The
transaction matrix is:

𝑨 = (𝑎𝑖, 𝑗,𝑡 )𝑖∈𝑈 ,𝑗∈𝐶,𝑡≤𝜏 .

• Token-Level Features: Provided by the Token Information
section (Section 2), these include time-dependent features for
each token 𝑗 ∈ 𝐶:
– Price: 𝑝 𝑗,𝑡 , the market value of token 𝑗 at time 𝑡 .
– Market Capitalization:𝑚 𝑗,𝑡 , calculated as the product of the

token price and circulating supply.
– Volume: 𝑣 𝑗,𝑡 , the trading volume at time 𝑡 .

These features are represented as time-series vectors over 1, . . . , 𝜏 :

𝒑 𝑗 = (𝑝 𝑗,1, . . . , 𝑝 𝑗,𝜏 ), 𝒎 𝑗 = (𝑚 𝑗,1, . . . ,𝑚 𝑗,𝜏 ), 𝒗 𝑗 = (𝑣 𝑗,1, . . . , 𝑣 𝑗,𝜏 ) .

• Global Market Indices: Provided by the Global Market Indices
section (Section 3), these reflect broader market trends, such as
Bitcoin dominance and total market capitalization. The time-
series vector is:

𝒈 = (𝑔1, 𝑔2, . . . , 𝑔𝜏 ).
• Market Sentiment: Derived from the Textual Indices section of

the dataset, market sentiment is captured by a sentiment index
𝑠𝑡 , representing collective emotions and opinions. The sentiment
is represented as a time-series vector:

𝒔 = (𝑠1, 𝑠2, . . . , 𝑠𝜏 ) .

This provides the essential terminologies for modeling user be-
havior and market conditions in our tasks.

4.1 User behavior prediction
This task aims to forecast users’ purchasing and selling behaviors in
the cryptocurrency market. By predicting which users are likely to
buy or sell tokens and identifying the specific tokens they are most
likely to transact with, stakeholders – such as traders, investors, and
institutions – can anticipate sharp market movements and respond
proactively. For this task, we consider the interplay of multiple
factors influencing user behavior.

Task definition. The goal of the user behavior prediction task
is to forecast future transactions 𝑨:,:,𝑡 at a future time 𝑡 > 𝜏 , based
on historical data. The task can be formally defined as follows:

User behavior prediction task
Input: a transaction matrix 𝑨, price vectors (𝒑 𝑗 ) 𝑗∈𝐶 ,

market capitalization vectors (𝒎 𝑗 ) 𝑗∈𝐶 and vol-
ume vectors (𝒗 𝑗 ) 𝑗∈𝐶 of all tokens, global market
vector 𝒈 and market sentiment vector 𝒔.

Output: predicted transactions 𝑨:,:,𝑡 at time 𝑡 > 𝜏

4.2 Token Price Prediction
This task involves forecasting the future price of a cryptocurrency
token, providing insights into price fluctuations and supporting
informed investment decisions. We approach this task in a broader
market context by incorporating historical token data, global mar-
ket indices, and sentiment analysis from the textual indices. The
task is formulated as:

Token price prediction task
Input: price vectors (𝒑 𝑗 ) 𝑗∈𝐶 of all tokens, global mar-

ket vector 𝒈 and market sentiment vector 𝒔.
Output: predicted prices of all tokens (𝑝 𝑗,𝑡 ) 𝑗∈𝐶 at time

𝑡 > 𝜏

4.3 User behavior marking
This task is designed to evaluate the investment risk associated
with users’ cryptocurrency trading activities. While risk has many
interpretations, in this work, we specifically focus on the risk stem-
ming from user investment behaviors. Unlike traditional financial
markets, cryptocurrency markets introduce additional uncertain-
ties driven by extreme price fluctuations, speculative behavior, and
the nascent nature of digital assets. Evaluating how users’ buying
and selling decisions respond to such market volatility is a vital
aspect of understanding investment risk for traders, investors, and
institutions alike [32].

To complete this task, one may utilize insights from two pri-
mary sources, user selling behavior and predicted token prices, in
conjunction with historical price vectors to generate a risk score. The
risk score reflects how a user’s trading behavior, aligns with the
price movements of the traded tokens. The objective is to assess
the degree of risk involved in an individual’s recent investment
decisions, accounting for market volatility and the potential for
significant financial loss.

To define the task formally, given an event where user 𝑖 ∈ 𝑈
sells token 𝑗 ∈ 𝐶 at time 𝑡2, the first step is to identify the time 𝑡1
when the user initially purchased token 𝑗 . We then construct a price
vector for token 𝑗 over the time period from 𝑡1 to 𝑡2, denoted as
𝒑 𝑗,𝑡1:𝑡2 = (𝑝 𝑗,𝑡1 , 𝑝 𝑗,𝑡1+1, . . . , 𝑝 𝑗,𝑡2 ). This price vector may be derived
from historical prices, predicted prices, or a combination of both,
capturing the market fluctuations that occurred during the user’s
holding period.

The User Behavior Marking task takes this constructed price
vector as input and returns a risk score 𝑟𝑖, 𝑗 that indicates the level of
risk associated with user 𝑖’s investment in token 𝑗 . The formulation
of the task is presented as follows:

Limitations: Some users, in order to mitigate risk and protect
privacy, use a wallet to trade only a single token or a small number

4
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User behavior marking task
Input: user 𝑖 , token 𝑗 , price vector 𝒑 𝑗,𝑡1:𝑡2
Output: risk score 𝑟𝑖, 𝑗

of tokens [53], which implies that a single user may possess mul-
tiple addresses. However, our user behavior marking strategy is
based on the assumption of a one-to-one relationship between users
and addresses. For instance, when a user has multiple addresses,
transactions across different addresses are treated as independent
activities, making it difficult to effectively consolidate them and
thus failing to capture the user’s overall trading patterns. Future
work could address this limitation by developing methods to cap-
ture the behavior associated with multiple addresses belonging to
the same user.

5 Baselines and Experiments
3MEthTaskforce implementes and evaluates several baseline meth-
ods for the tasks defined above.

5.1 User behavior prediction
5.1.1 Baseline methods. We treat this task as a link prediction task
on an edge-labelled temporal bipartite graph. The set of vertices 𝑉
of the graph is 𝑈 ∪𝐶 containing both the set of users and tokens.
A temporal edge is of the form (𝑢, 𝑐 𝑗 , 𝑡) where 𝑢 ∈ 𝑈 , 𝑐 𝑗 ∈ 𝐶 ,
and 1 ≤ 𝑡 ≤ 𝜏 is the timestamp of the edge. This edge denotes
a transaction where user 𝑢 purchases some amount of token 𝑐 𝑗
at timestamp 𝑡 . For each temporal edge (𝑢, 𝑐 𝑗 , 𝑡), associate 𝑞 and
trans𝑗,𝑡 to form a labelled temporal edge (𝑢, 𝑐, 𝑞, trans𝑗,𝑡 ), where 𝑞
represents the amount of token 𝑐 𝑗 purchased during this transaction,
and trans𝑗,𝑡 is a transaction label, discussed below.

For the user behavior prediction task, we construct a graph (𝑉 , 𝐸)
where 𝐸 contains the set of all such labelled temporal edges up to
a certain timestamp 𝜏 . This graph can be constructed using the
dataset in 3MEthTaskforce. Our goal is to train a GNN that predicts,
for any 𝑢 ∈ 𝑈 and 𝑐 ∈ 𝐶 and a future timestamp 𝑡 ′ > 𝜏 , whether a
temporal edge (𝑢, 𝑐, 𝑡 ′) will appear.

To describe our baseline methods in detail, we need to elaborate
on the following issues.

Textual Sentiment Index Extraction. To convert textual data
into sentiment indices, we concatenate the top posts at time 𝑡 into a
vector txt𝑡 = txt𝑡,1 | txt𝑡,2 | · · · | txt𝑡,ℓ . We then apply two methods
to extract sentiment indices from txt𝑡 :
(1) Following [7], we use a large language model (DeepSeek) to
generate an overall sentiment score 𝑠overall𝑡 on a scale of 0 to 10,
where 5 represents neutral sentiment, below 5 indicates negative
sentiment, and above 5 indicates positive sentiment.
(2) The second method refines the first by incorporating the post
timestamps to account for cryptocurrency trends and generating
two separate scores: 𝑠pos𝑡 for positive sentiment and 𝑠neg𝑡 for nega-
tive sentiment.

The prompts used for these methods are provided in Appen-
dix D. The sentiment index aggregation methods are provided in
Appendix F

Transaction Labels. To comprehensively analyze performance
of models for this link prediction task, we define several different
transaction label vectors:
• trans_record𝑗,𝑡 = (𝑝 𝑗,𝑡 ,𝑚 𝑗,𝑡 , 𝑣 𝑗,𝑡 ) includes only token informa-

tion.
• trans_global𝑗,𝑡 = 𝑔𝑡 includes only global market index.
• trans_text𝑗,𝑡 = 𝑠overall𝑡 includes the only overall sentiment score.
• trans_text_llm𝑗,𝑡 = (𝑠

pos
𝑡 , 𝑠

neg
𝑡 ) contains both positive and nega-

tive sentiment scores.
• trans_all𝑗,𝑡 = (𝑝 𝑗,𝑡 ,𝑚 𝑗,𝑡 , 𝑣 𝑗,𝑡 , 𝑔𝑡 , 𝑠

overall
𝑡 , 𝑠

pos
𝑡 , 𝑠

neg
𝑡 ) includes all

features: token information, global market index, and sentiment
scores.
3MEthTaskforce implements six baseline dynamic GNNmod-

els to the constructed graph𝐺 : DyGFormer [54], JODIE [28], DyRep
[46], TGAT [51], TGN [41], and TCL [48]. Thesemodels were chosen
as they were recently proposed for this task and have demonstrated
promising performance in various link prediction tasks. For each
of these models, we measure the performance of link prediction
using all six transaction label vectors above. A detailed description
of these models can be found in Appendix C.

5.1.2 Experiment Setup. We aim to compare different GNNmodels,
input features, and the impact of two types of sentiment features
on performance.

Dataset. We use the smaller dataset from the Transaction Record
section, containing approximately 260, 000 transactions and 29, 164
active wallet addresses. From this, we extract the transaction label
vectors as defined above. The datasets are split chronologically into
train/validation/test sets with a 70%/15%/15% ratio.

Parameter Settings. We trainmodels usingAdam [15] with binary
cross-entropy loss. All models are trained for 100 epochs, with early
stopping after 20 epochs of no improvement. The learning rate is
set to 0.0001, and the batch size is 200.

Performance Metrics. Following [38, 40, 50, 51], we evaluate user
behavior prediction using test set average precision (TAP) and new
node average precision (NAP). The inductive negative sampling
strategy is described in [38]. All results are averaged over three
runs.

5.1.3 Experiment Results. Table 1 reports the performance of six
models across datasets using TAP and NAP as metrics.

Impact of LLM-enhanced sentiment. Models incorporating LLM-
derived sentiment scores (trans_text_llm) outperform those us-
ing only overall sentiment (trans_text). For example, TCL im-
proves from 0.737NAP on trans_text to 0.786 on trans_text_llm,
demonstrating the benefit of incorporating background knowledge
from LLMs for sentiment annotation.

Effectiveness of additional features. Adding features like token
information and sentiment improves performance across models.
For instance, DyRep achieves a TAP of 0.926 on trans_text_llm,
compared to 0.914 using only transaction data. Similarly, DyG-
Former sees a TAP increase from 0.928 on transactions to 0.938
on trans_text_llm, indicating that these additional features help
predict user-token interactions more effectively.
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Table 1: Comparison of six dynamic GNN models on six datasets for the User Prediction task. TAP is the average precision on
the test set, and NAP is the average precision on the new node set. An underline indicates the best result in each column, and

bold font highlights the best result in each row.

Dataset DyRep TCL TGN TGAT JODIE DyGFormer

tap nap tap nap tap nap tap nap tap nap tap nap

trans 0.914 0.870 0.859 0.778 0.917 0.860 0.878 0.794 0.935 0.898 0.928 0.879
trans_record 0.918 0.876 0.870 0.794 0.899 0.834 0.861 0.773 0.930 0.890 0.925 0.879
trans_global 0.909 0.864 0.853 0.767 0.881 0.810 0.834 0.750 0.931 0.889 0.939 0.905
trans_text 0.923 0.876 0.835 0.737 0.917 0.861 0.826 0.705 0.942 0.900 0.919 0.870
trans_text_llm 0.926 0.881 0.867 0.786 0.926 0.873 0.841 0.733 0.955 0.920 0.938 0.896
trans_all 0.922 0.869 0.846 0.750 0.887 0.806 0.845 0.743 0.941 0.898 0.913 0.860

Performance of different GNN models. JODIE and DyGFormer
consistently perform best, with JODIE reaching a TAP of 0.941
on trans_all and 0.955 on trans_textual_llm. DyRep shows
stable results, with a high of 0.926 on trans_text_llm, while TCL
performs weaker, reaching only 0.750 TAP on trans_all.

5.2 Price Prediction
5.2.1 Baseline Method. We approach the price prediction task as a
time series forecasting problem using two baseline models: LSTM
and GRU [14, 16]. See Appendix E. We define four input vectors for
evaluation:

• price𝑗,𝑡 = 𝑝 𝑗,𝑡
• price_global𝑗,𝑡 = (𝑝 𝑗,𝑡 , 𝑔 𝑗,𝑡 )
• price_text𝑗,𝑡 = (𝑝 𝑗,𝑡 , 𝑠pos𝑡 , 𝑠

neg
𝑡 )

• price_all𝑗,𝑡 = (𝑝 𝑗,𝑡 , 𝑔 𝑗,𝑡 , 𝑠pos𝑡 , 𝑠
neg
𝑡 )

5.2.2 Experiment Setup. The experiment aims to: (1) Compare
LSTM and GRU across multiple tokens. (2) Test the impact of addi-
tional features (global index and sentiment). (3) Assess prediction
performance based on how long tokens have been on the market.

We classify all tokens by the time in which they appear on the
market. This can be extracted from the Token Information Section
of the datasets. In particular, fix 𝑥 ∈ [0, 1], and call a token 𝑐 𝑗 𝑥-
recent if the first timestamp 𝑥 𝑗 in which 𝑐 𝑗 has a non-zero price
record is less than or equal to 𝑥 , i.e., 𝑐 𝑗 appears on the market before
𝑥 of the total timestamps have elapsed. For our experiment, we set
𝑥 ∈ {0, 0.4, 0.8}. Intuitively, the 0-recent, 0.4-recent, and 0.8-recent
tokens represent tokens with the longest, longest-to-medium, and
longest-to-shortest market presence:
• 0-recent tokens: 4 tokens (Peercoin, MaidSafeCoin, Swarm Net-

work, OKcash)
• 0.4-recent tokens: 211 tokens (e.g., Obyte, Blox, Augur, AppCoins)
• 0.8-recent tokens: 1592 tokens (e.g., Chimpion, GogolCoin, PoolTo-

gether)
We use mean squared error (MSE) as the performance metric and

report the average performance across all tokens.

5.2.3 Results. In Table 2, we report the performance of the above
four datasets on both LSTM and GRU models.

Effect of adding sentiment information. Incorporating sentiment
information slightly improves model performance for tokens with

shorter market history. Specifically, when 𝑥 = 0.8, the MSE of
LSTM on the price is 0.532, whereas that of LSTM on the price_text
decreases to 0.511. MSE of GRU over price is 1.077, while that of
GRU over price_text decreases to 1.019.

Effect of value of 𝑥 . As 𝑥 increases (i.e., adding more new tokens),
bothmodels show a decreasing trend in prediction performance, but
their performance significantly improves on datasets that include
global and sentiment features. For example, in both LSTM and
GRU models, the MSE on price increases as 𝑥 moves from 0 to 0.8,
with the LSTM’s MSE increasing from 0.001 to 0.532, and GRU’s
MSE increasing from 0.001 to 1.077. However, on price_global and
price_all, theMSE significantly decreases as 𝑥 increases. Specifically,
in LSTM, the MSE on the price_global drops from 83.910 to 2.242,
while in the GRU model, the MSE decreases from 45.330 to 2.259.

Performance of different models. Overall, LSTM model performs
slightly better than GRU on most datasets, especially on those
that include additional features. For instance, on price_all, the
MSE of LSTM is 1.667, compared to 2.271 for GRU. Similarly, on
price_sentiment, LSTM achieves an MSE of 0.511, whereas GRU’s
MSE is 1.019.

5.3 User Behavior Marking
5.3.1 Baseline methodology. 3MEthTaskforce deploys a method
proposed by [3] to calculate the users’ risk score. From CAPM and
Tobin’s Separation Theorem [43, 44], [3] derives the relationship
between the market portfolio and user risk preferences. This ap-
proach links traditional financial theories to the cryptocurrency
markets, where user behavior can be highly speculative and driven
by volatility.

Suppose user 𝑖 purchases token 𝑗 at time 𝑡1 and price 𝑝 𝑗,𝑡1 , and
sells it at time 𝑡2 and price 𝑝 𝑗,𝑡2 . The percentage of the market
portfolio is calculated by

𝑤 =
𝐸𝑅𝑀 − 𝑅𝑓

𝑟𝜎2
𝑀

.

where 𝑟 is the investor’s risk aversion coefficient, 𝑅𝑓 is the risk-free
rate, 𝐸𝑅𝑀 = (𝑝 𝑗,𝑡2 −𝑝 𝑗,𝑡1 )/𝑝 𝑗,𝑡1 is the expected return of the market
portfolio, and 𝜎2

𝑀
represents its variance, calculated by

𝜎2𝑀 =
1

𝑡2 − 𝑡1

𝑡2−1∑︁
𝑡=𝑡1

(
𝜌 𝑗 (𝑡) − 𝜌 𝑗

)2
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Table 2: Comparison of LSTM and GRU models with different 𝑥 values. The metric is MSE (Mean Squared Error). An underline
indicates the best result in each column, and bold font highlights the best result in each row

Dataset LSTM GRU

𝑥 = 0 𝑥 = 0.4 𝑥 = 0.8 𝑥 = 0 𝑥 = 0.4 𝑥 = 0.8

price 0.001 0.006 0.532 0.001 0.020 1.077
price_global 83.910 5.645 2.242 45.330 7.686 2.259
price_text 0.004 0.021 0.511 0.003 0.103 1.019
price_all 40.440 5.069 1.667 34.405 1.127 2.271

where 𝜌 𝑗,𝑡 = (𝑝 𝑗,𝑡+1 − 𝑝 𝑗,𝑡 )/𝑝 𝑗,𝑡 is the return at time 𝑡 , and 𝜌 𝑗
represents the average return over the time interval [𝑡1, 𝑡2].

Let𝑅𝑓 be the real-world risk-free rate (e.g., TY60MCD). Due to its
relatively low volatility and limited impact on the cryptocurrency
market [1, 8, 13], we treat 𝑅𝑓 as a constant, calculated as the average
yield of treasury over the past 5 years.

In the context of our dataset, we consider only the user’s returns
from token volatility, meaning the user’s entire portfolio is in the
market, implying𝑤 = 1. In this case, we obtain:

𝑟 =
𝐸𝑅𝑀 − 𝑅𝑓

𝜎2
𝑀

.

For simplicity, we treat each user’s investment as an independent
market portfolio. By calculating the market portfolio’s expected
return 𝐸𝑅𝑀 and its volatility 𝜎2

𝑀
, we can determine how the user’s

risk preferences and decisions align with the overall market’s per-
formance. A higher risk aversion coefficient 𝑟 would indicate that
the user is more conservative, taking on less risk, while lower 𝑟
values suggest a higher tolerance for risk. Therefore, we compute
the user’s risk preference for the current portfolio as

𝑅𝑖𝑠𝑘 (𝑖, 𝑗,𝒑 𝑗 , 𝑡1, 𝑡2) = 𝑟 .

5.3.2 Experiment Setup. Our experiment aims to validate the risk
score computed above using the 3MEthTaskforce dataset. We con-
duct two primary evaluations:

(1) TokenInsight rating evaluation: We analyze the relationship be-
tween our calculated risk scores and the token ratings of 269
tokens ranked by the website TokenInsight.com. The rating are
AAA, AA, A, BBB, BB, B, CCC, CC, C, D, arranged in descend-
ing order, with AAA being the highest rating, followed by AA
and A, while D represents the lowest rating.

(2) Time period risk evaluation: We investigate whether the gen-
eral investment principle—short-term trading tends to carry
higher risks, while long-term investments tend to carry lower
risks—applies to our risk score [21, 35].

For this, we select two sets of tokens for these experiments:

• TokenInsight rating evaluation: We use a set of 269 tokens 𝐶 =

{𝑐1, 𝑐2, . . . , 𝑐269}, each with a rating 𝑅 𝑗 ) from TokenInsight. Rat-
ings are categorized into 10 levels, from AAA (highest) to D
(lowest).
• Time period risk evaluation: We use 1, 559 tokens with at least

two years of price history to assess risk over various investment
periods.

For each token 𝑐 𝑗 , we calculate the risk score for user 𝑖 over a
time periods of 𝑑 days. The risk score 𝑅𝑖𝑠𝑘 (𝑖, 𝑗,𝒑 𝑗 , 𝑡1, 𝑡2) is based
on the price sequence 𝒑 𝑗 [𝑡1 : 𝑡2] between the start time 𝑡1 and end
time 𝑡2 where 𝑡2 − 𝑡1 + 1 = 𝑑 .
• For rating evaluation, we calculate the average risk score among

all tokens with rating 𝑅, where 𝑅 is one of the ratings from
TokenInsight. Let 𝐶𝑅 denote the set of tokens with rating 𝑅. For
each 𝑑 ∈ {30, 90, 180, 365}, we examine how the average risk
score among all tokens in𝐶𝑅 for a period of 𝑑 days varies across
different token ratings to validate the correlation between token
risk and token rating.

• For time period evaluation, we randomly select two weeks as the
end time 𝑡2, with the period ranging from 1 to 26 weeks. We then
compute the risk for each user 𝑖 , where the investment period
𝑑 ∈ {7, 14, . . . , 182}, and analyze the risk distribution across
different investment periods. We assess whether the risk score
follows the general investment principle that shorter investment
periods carry higher risks, while longer periods carry lower risks,
by analyzing risk values across various investment durations.

5.3.3 Result. Our experimental results indicate that all calculated
risk values are negative, which suggests that the cryptocurrency
market inherently carries high risks. To facilitate analysis and pre-
sentation of the results, we reported the absolute values of the risk
scores, meaning that higher absolute values correspond to greater
risks.

The results shown in Figure 2 demonstrate a significant correla-
tion between users’ risk preferences and the token rating provided
by TokenInsight. Specifically, investing in tokens with higher rat-
ings indicates a higher risk preference among users, and this trend
becomes more pronounced as the investment period increases.

Moreover, the experimental findings shown in Figure 3 reveal a
relationship between investment duration and risk. We observed
that longer investment horizons are generally associated with more
stable and lower risks.

From these analyses, we can conclude that Token Ratings not
only reflect the intrinsic ratings of tokens but also serve as an
effective measure of users’ risk preferences, especially in long-term
investments. Additionally, the increase in risk during the Luna
event validates the sensitivity and accuracy of our model.

5.4 Case Study: LUNA Incident
LUNC’s price began to decline on May 5th [9]. During this period,
the cryptocurrency market experienced significant turbulence, with
many cryptocurrency prices exhibiting strong fluctuations due to
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Figure 2: This figure presents the performance of tokens included in the Token Rating in terms of their calculated risk across
different trading periods. The top four panels show the average risk of tokens at each rating level during the respective period,
while the bottom four panels group tokens with ratings containing A, B, and C, respectively, and display the average risk for

each group during the same periods.

Figure 3: This figure reports the changes in the average risk
of 1,599 tokens over an investment period ranging from 1 to

26 weeks.

the impact of the LUNA incident [47]. To compare the investment
risk in the cryptocurrency market during the 7 days of the event
and the 7 days prior, we randomly selected 200 tokens with price
records during this period and calculated their sell transactions
from April 28th to May 4th (before the incident) and from May 5th
to May 11th (LUNA incident). For simplicity, we assume that the
transaction period is no longer than 90 days.

We define the set of transactions during the LUNA event (May
5th–11th) as 𝑨luna, where each transaction has a defined buy time
𝑡1𝑎 and sell time 𝑡2𝑎 . The price change for the token involved in
each transaction is noted over this period. The set of users who
made these transactions is represented as 𝑼luna.

For each transaction during the LUNA event, we calculate a risk
score based on the user’s behavior and the token’s price change
between 𝑡1𝑎 and 𝑡2𝑎 . The average risk for all transactions during
this event is then computed by taking the mean of all individual
risk scores.

Similarly, for the week prior to the LUNA event (April 28th–May
4th), we define the set of transactions as𝑨common, with correspond-
ing buy and sell times for each transaction. The users involved in
these transactions are denoted by 𝑼common, and the risk scores are
calculated in the same way as for the LUNA event. The average risk

for these transactions is also computed by averaging all individual
risk scores.

By comparing the average risk during the LUNA event with
the average risk in the prior week, we can assess how the market
turbulence caused by the LUNA incident impacted investment risk
in the cryptocurrency market.

Indeed, during the Luna incident, our computed risk score reaches
24,658,527.37, significantly higher than the 21,353,272.87 ob-
served in the week prior, further supporting this conclusion. This
result aligns with our intuitive expectations.

6 Broader Impact
The rapid growth of blockchain in decentralized finance (DeFi)
has introduced both new opportunities and more complex risk
management challenges. Incidents like the Luna de-pegging have
exposed the limitations of traditional risk assessment methods in
addressing the high-frequency, dynamic nature of cryptocurrency
transactions. To tackle these issues, 3MEthTaskforce employs an
improved financial model to deliver more precise risk calculations
for cryptocurrency trading activities. This framework not only
enhances traditional risk management but also sets the stage for
machine-learning-driven, proactive risk monitoring systems.

The 3MEthTaskforce dataset, by integrating diverse data sources,
creates a robust foundation for tasks like user behavior prediction
and price forecasting. By combining these machine learning models
with financial formulas, we can anticipate market trends, enhance
predictive capabilities, and offer a more forward-looking approach
to risk management.

As DeFi continues to evolve, the tools provided by 3MEthTask-
force will be crucial in advancing real-time risk monitoring, user
behavior analysis, and the detection of malicious activities. The
benchmarks introduced in this platform serves to empower re-
searchers and stakeholders to address the complexities of market
fluctuations and emerging risks, contributing to automated decision-
making in dynamic market conditions.
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Appendix

A Raw Data
Table 3 is an example of the Token Rating in the Token Info Sec-
tion. It presents the names, symbols, rating levels, and scores of
five cryptocurrencies, including Ethereum, Bitcoin, BNB, Dai, and
Uniswap. Each cryptocurrency is rated based on its performance
(either AAA or AA), with a corresponding numerical score.

Table 3: Examples of token_rating.cav Table

Name Symbol Rating Level Rating Score

Ethereum ETH AAA 81.34
Bitcoin BTC AA 78.47
BNB BNB AA 77.83
Dai DAI AA 76.17
Uniswap UNI AA 73.66

Table 4 is an example of the Market Cap in the Global Index Sec-
tion. It shows the time-series data of the total market capitalization
of cryptocurrencies, covering five dates from April 29, 2013, to May
7, 2013.

Table 4: Examples of Total Market Capitalization Data

DateTime Market Cap

2013/4/29 12:00 1583440000
2013/5/1 12:00 1637389952
2013/5/3 12:00 1275410048
2013/5/5 12:00 1335379968
2013/5/7 12:00 1313900032

Table 5 is an example of the 24h Volume Data in the Global Index
Section. This table presents the 24-hour trading volume from Febru-
ary 25, 2014, to March 5, 2014. The volume ranges from 7,047,3200
to 11,784,0000, indicating fluctuations in market activity during this
period.

Table 5: Examples of 24h Volume Data

DateTime Volume (24h)

2014/2/25 13:00 70473200
2014/2/27 13:00 84957000
2014/3/1 13:00 41190400
2014/3/3 13:00 17991000
2014/3/5 13:00 117840000

Table 6 is an example of the Stablecoin Market Capitalization
Data in the Global Index Section. It shows the stablecoin market
capitalization data from March 10, 2016, to March 18, 2016.

Table 6: Examples of Stablecoin Market Capitalization Data

DateTime Stablecoin Market Cap

2016/3/10 13:00 1451448.067
2016/3/12 13:00 1451593.424
2016/3/14 13:00 1451479.734
2016/3/16 13:00 1451602.250
2016/3/18 13:00 1451575.947

Table 7 is an example of the TY60MCD.csv in the Global Index
Section. It lists the TY60MCD data from April 2021 to August 2021.

Table 7: Examples in TY60MCD.csv

DateTime TY60MCD
2021/4/1 0.75
2021/5/1 0.92
2021/6/1 0.86
2021/7/1 0.87
2021/8/1 0.87

Table 8 is an example of Token Transaction Data for token AAVE.
This table records the transaction information for AAVE, including
token address, sender and receiver addresses, transaction value,
transaction hash, log index, block timestamp, and block number.
The transaction times range from the early hours of July 26, 2024,
to later that night, showcasing multiple large transactions of AAVE
tokens.

Table 9 is an example of the token_general Table in the Token
Info Section. This table lists information about five tokens, including
ID, symbol, name, Ethereum address, and decimals.

Table 10 is an example of Token Recording BNB in the Token
Info Section. It records the historical price, market cap, and total
volume for BNB tokens. The data covers timestamps, prices, market
capitalizations, and total volumes across several time intervals.

Table 11 is an example of the Token Sentiment Data using back-
ground knowledge from an LLM for sentiment scoring. The table
provides sentiment analysis of textual data, including score, times-
tamp, number of comments, text content, and positive/negative
sentiment scores. For instance, a comment on November 19, 2013,
received 3 positive and 7 negative scores, with the text partially
masked.

Table 12 is an example of Bitcoin Dominance Data in the Global
Index Section. It includes the market capitalizations of Bitcoin
(BTC), Ethereum (ETH), Tether (USDT), BNB, Solana (SOL), and
other cryptocurrencies.

B Ethics and Privacy
This research adheres to the ethical guidelines outlined by the
Association of Internet Researchers [20] and Townsend & Wallace
[45]. In conducting this study, we have carefully considered several
factors to minimize potential ethical and privacy risks.

Ethereum is a public and permissionless blockchain, whichmeans
its entire network is open for anyone to join, participate in con-
sensus, execute transactions, and view the ledger. This openness
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Table 8: Examples in Token Transaction Data for AAVE

Token Address From Address To Address Value Transaction Hash Log Index Block Timestamp Block Number

0x...dae9 0x...7fad 0x...7e1c 8.40279E+16 0x...276e3 101 2024-07-26 01:28:59 20387439
0x...dae9 0x...5622 0x...9a81 8.51435E+18 0x...90c4c 484 2024-07-26 01:14:11 20387365
0x...dae9 0x...f2c8 0x...4bee 1.15726E+20 0x...13aac 171 2024-07-26 01:12:11 20387356
0x...dae9 0x...5145 0x...0703 1.14393E+21 0x...ac8cf 367 2024-07-25 20:47:23 20386044
0x...dae9 0x...699c 0x...5fb6 3.40423E+18 0x...84f0 204 2024-07-25 20:10:47 20385863

Table 9: Examples in token_general_3880.csv Table

ID Symbol Name ETH Address Decimal

0 zcn Zus ...38f3b78 10
1 0kn 0 Knowledge Network ...7d29036 18
2 ome O-MEE ...826977e 18
3 zrx 0x Protocol ...699f498 18
4 0x0 0x0.ai: AI Smart Contract ...0811ad5 9

Table 10: Examples in Token History Information for BNB ...1bdd52.csv

Timestamp Price Market Caps Total Volumes

1.50552E+12 0.107250624 10725062.44 1.051223307
1.50561E+12 0.154041291 15404129.09 14.67858722
1.50569E+12 0.173491239 17349123.91 6.001766938
1.50578E+12 0.168334191 16833419.06 3.878927407
1.50587E+12 0.166627925 16662792.49 40.6876186

Table 11: Examples in Text Data with Sentiment Analysis

Score Timestamp Number of Comments Text (masked) Positive Negative

3191 2013/11/19 19:15 472 I’m one of the Senators attending... 3 7
3193 2013/11/25 1:38 282 I was bored so I animated the... 1 0
3524 2014/2/13 23:49 470 on r/bitcoin right now... 0 7
3055 2014/2/18 20:15 463 Bitcoin takes a walk with Dogecoin... 2 1
3455 2014/2/26 16:41 489 Open Letter to Michael Casey - WSJ reporter... 5 7
3954 2014/2/28 8:17 416 We’ve gotta be able to laugh at ourselves... 1 0

underscores its public nature, with no central authority control-
ling access to the network or its data. Similarly, the Reddit data
used in this study is sourced exclusively from public subreddits
and posts. In line with the emphasis on publicness, no private mes-
sages or content from restricted communities have been accessed
or included.

In maintaining the pseudonymity of transactions, our dataset
preserves the same level of anonymity inherent to the Ethereum
network. Reddit users typically operate under pseudonyms, and to
further minimize privacy risks, we have anonymized the data by
replacing post identifiers with randomly generated values. In addi-
tion, we applied data processing techniques to mask any personally
identifiable information (PII) and sensitive information that might
have been present in the raw data.

We have implemented strict protocols governing the use and
distribution of this dataset. Researchers seeking access will be re-
quired to agree to terms that prohibit any attempts to re-identify
individuals or use the data for purposes other than approved re-
search.

The insights gained from this dataset have the potential to con-
tribute significantly to our understanding of cryptocurrency trading
and its broader ecosystems. These findings can help advance the
development of more secure, equitable, and robust blockchain and
decentralized finance (DeFi) systems. We believe the potential ben-
efits of this research outweigh the minimal risks associated with
using publicly available data.
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Table 12: Examples in Cryptocurrency Bitcoin Dominance Data

DateTime BTC Cap ETH Cap USDT Cap BNB Cap SOL Cap Others Cap

2023/9/3 12:00 5.04E+11 1.97E+11 82901682430 32993907647 7967342850 2.18E+11
2023/9/10 12:00 5.04E+11 1.97E+11 82992946191 32957692204 7984825883 2.19E+11
2023/9/17 12:00 5.18E+11 1.97E+11 83065027653 33069547650 7871412204 2.22E+11
2023/9/24 13:00 5.18E+11 1.92E+11 83206758665 32396394279 8035147376 2.21E+11
2023/10/1 13:00 5.26E+11 2.01E+11 83260095938 33046306303 8834373543 2.25E+11

C GNN Model
DyGFormer. lies in introducing the self-attention mechanism of

Transformers to capture long-term dependencies in dynamic graphs.
By incorporating temporal encoding within the Transformer, DyG-
Former effectively captures complex dynamic changes in graphs.
Compared to other models that utilize short-term temporal win-
dows, DyGFormer excels in tasks involving long-term dependen-
cies.

JODIE. focuses on continuous time-series interaction modeling,
tracking the long-term interaction dynamics between users and
items. This bidirectional embedding update mechanism makes it
particularly effective in scenarios with frequent user-item inter-
actions (e.g., recommendation systems). JODIE leverages RNNs
to capture the historical dependencies of nodes (users and items),
making it well-suited for long-term behavior prediction.

DyRep. lies in its distinction between two types of events: in-
teraction events between nodes (such as transactions or communi-
cations) and structural events (such as the creation or deletion of
nodes/edges). DyRep divides dynamic graph tasks into these two
categories of events and models them using event time sequences,
making it ideal for tasks involving constantly changing nodes and
edges.

TGAT. is the combination of Graph Convolutional Networks
(GCNs) with temporal encoding and the use of graph attention
mechanisms to capture dynamic relationships in the graph. Unlike
simple temporal updates, TGAT focuses on important neighboring
nodes through attention mechanisms, making it well-suited for
dynamic networks with frequent interactions.

TGN. introduces a message-passing mechanism to update node
states, making it particularly suitable for learning node embeddings
in large-scale dynamic graphs. Unlike TGAT, TGN is not restricted
to attention mechanisms but combines message-passing and tempo-
ral updates, allowing it to scale to large graphs and handle complex
dynamic environments.

TCL. utilizes contrastive learning to capture the temporal evo-
lution of node embeddings in dynamic graphs by comparing node
representations at different time points. Unlike other models that
rely on supervised learning, TCL constructs positive and negative
sample pairs (e.g., the same node at different time points) to capture
temporal changes. This unsupervised learning approach enables
TCL to perform well in dynamic graph tasks without explicit labels.

D Prompt
Prompt 1: You are a useful cryptocurrency social media post

sentiment analysis expert. Now I give you the text of the top reddit
posts on cryptocurrency scope, then you need to understand and
analyze the sentiment score of this post in the context of cryptocur-
rency (on a scale of 10, 0-4 is negative, higher is positive, lower is
negative, 6-10 is positive, 5 is neutral).Below is the text of reddit’s
top crypto-scoped posts that you should analyze as above, just give
me the final score, just give a number like "6" :

Prompt 2: You are a helpful cryptocurrency social media posts
sentiment analysis expert. Now I give you the cryptocurrency scope
top posts’ text of reddit with its timestamp, and then you need un-
derstand and analyse the following content in context of cryptocur-
rency with considering the trends and news about cryptocurrencies
at the time of the timestamp and give me the negative score and
the positive score. The sentiment score may take into account not
only the sentiment of the post regarding cryptocurrencies, but also
whether the time of the post and the context (e.g., big events in
the cryptocurrency space) seemed to have a positive or negative
impact on cryptocurrencies at the time. For example, if the text say:
Bitcoin is a kind of cryptocurrency, this is a totally neutral, so the
negative score and the positive score are 0; if the text say: I like
Bitcoin, while bitcoin has high volatility; this somewhat negative
and somewhat positive, so the negative score is about 5(up to 10)
and positive score is about 5(up to 10); if the text say, although
bitcoin has high volatility, I like it, it should be higher positive
score than negative score; these examples are make you understand
how marking. A forementioned content is sample cryptocurrency
sentiment analysis, the actual senario should be more complicated.
For example the first text said: 1384888505 I’m one of the Senators
attending today’s U.S. Senate Banking Committee hearing related
to bitcoin. What would you like me to know? The timestamp of this
post is 1384888505, and then the content is related to the hearing,
indicating that at that time, Bitcoin may have attracted a lot of
attention, but at that time, people do not know whether this thing
is good or not, and may have to hold a hearing. You need to consider
the information at this level, and then assign positive and negative
scores separately. The following is the cryptocurrency scope top
posts’ text of reddit with its timestamp, you should analyze follow
the aforementioned requirements and only give me the final score
like "positivate score: 2, negative score: 3":

E LSTM and GRU
LSTM (Long Short-Term Memory) in Time Series Problems. LSTM

is a type of recurrent neural network (RNN) specifically designed to
13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

overcome the limitations of traditional RNNs in handling long-term
dependencies. It addresses the vanishing gradient problem, which
commonly arises in training standard RNNs, making LSTM particu-
larly well-suited for time series forecasting. In LSTM, memory cells
maintain information over long periods through three key gates:
the input gate, forget gate, and output gate. These gates regulate the
flow of information, allowing the network to selectively retain or
forget information based on its relevance to the prediction task. As
a result, LSTM can capture both short-term and long-term patterns
in time series data, making it a powerful tool for tasks such as stock
price prediction, weather forecasting, and anomaly detection in
time-dependent data.

GRU (Gated Recurrent Unit) in Time Series Problems. GRU is an-
other variant of recurrent neural networks, similar to LSTM but
with a simpler architecture. Unlike LSTM, GRU has only two gates:
the update gate and the reset gate. These gates control how much
past information is retained and how new input is incorporated
into the network’s state. GRUs are often preferred for time series
problems when computational efficiency is a concern, as they tend
to train faster and require fewer parameters than LSTMs while
maintaining competitive performance. GRU models are particu-
larly effective for shorter time series or when the data does not
exhibit complex long-term dependencies. Despite their simpler de-
sign, GRUs have proven successful in tasks such as traffic flow
prediction, energy consumption forecasting, and speech recogni-
tion, where the ability to capture temporal patterns is essential.

F LLM Knowledge Base Marked Sentiment Data
Algorithm

Algorithm 1, named LLM Knowledge Base Marked Sentiment Data,
processes sentiment data from a CSV file to generate a DataFrame
with updated values for scores, timestamps, number of comments,
and sentiment attributes (positive and negative). The algorithm
begins by reading and cleaning the data, then it processes each row
by applying a decay factor 𝑘 = 0.5 to reduce the scores, comments,
and sentiment values for certain time intervals. It also handles
missing timestamps by filling in empty entries. The final output
is a clean, processed DataFrame that includes adjusted sentiment
information over a specified period.

Algorithm 1 LLM Knowledge Base Marked Sentiment Data
Input: Path to the CSV file, decay factor 𝑘 = 0.5
Output: Processed DataFrame with updated score, timestamp,
number of comments, positive and negative attributes
Read the CSV file and clean the data
Initialize an empty list 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
for each row in data frame do

Extract 𝑠𝑐𝑜𝑟𝑒 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 , 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ,
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 from the row

for 𝑗 ← 0 to 2 do
Set 𝑛𝑒𝑤_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑗 · 1 day
Append [𝑠𝑐𝑜𝑟𝑒, 𝑛𝑒𝑤_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝] to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
Append [𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡] to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
Append [𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒]to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎

end for
for 𝑗 ← 3 to 6 do

𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 · 𝑘
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡 ← 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡 · 𝑘
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 · 𝑘
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ← 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 · 𝑘
Set 𝑛𝑒𝑤_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑗 · 1 day
Append [𝑠𝑐𝑜𝑟𝑒, 𝑛𝑒𝑤_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝] to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
Append [𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡]to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
Append [𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒]to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎

end for
if next post timestamp > 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 7 days then

while last post day < next post timestamp do
Append [0, 𝑙𝑎𝑠𝑡_𝑝𝑜𝑠𝑡_𝑑𝑎𝑦, 0, 0, 0] to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
Increment last_post_day by 1 day

end while
end if

end for
Check for invalid timestamps and clean processed data
Return 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 as a DataFrame

Algorithm 2, named Common LLM Marked Sentiment Data Pro-
cessing, processes sentiment data from a CSV file to generate a
DataFramewith updated attributes such as scores, timestamps, com-
ment counts, and overall sentiment. The procedure starts by clean-
ing the data (converting timestamps, ensuring numeric columns,
and removing missing values). It then processes each row, apply-
ing a decay factor 𝑘 to adjust the scores and comments over time.
The algorithm also fills in missing timestamps when necessary.
Finally, it aggregates the data by summing scores and comments
and averaging sentiment before returning the cleaned and sorted
DataFrame.
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Algorithm 2 Common LLM Marked Sentiment Data Processing
Input: Path to CSV, decay factor 𝑘
Output: Processed DataFrame with updated score, timestamp,
number of comments, and sentiment
Step 1: Data Cleaning
Convert ‘timestamp‘ to datetime, ensure columns are numeric,
remove NaNs
Step 2: Data Processing
for each row in the data do

Extract features: 𝑠𝑐𝑜𝑟𝑒 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 , 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡 ,
𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡

for 𝑗 = 0 to 2 do
Update and append 𝑠𝑐𝑜𝑟𝑒 and 𝑛𝑒𝑤_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 to

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
end for
for 𝑗 = 3 to 6 do

Apply decay to 𝑠𝑐𝑜𝑟𝑒 and 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐𝑜𝑚𝑚𝑒𝑛𝑡 , append
to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎

end for
if next post timestamp exceeds threshold then

Append filler rows for missing days
end if

end for
Step 3: Aggregation and Averaging
Group by ‘timestamp’, sum ‘score’ and ‘number_of_comment’,
average ‘sentiment’
Step 4: Final Clean-up
Sort by ‘timestamp’, remove invalid entries, return
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎
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